
Storing, Querying and Validating Fuzzy XML
Data in Relational Database

Naresh Kumar. K#1, Satyanand Reddy. ch*2, V.E.S. Murthy. N#3
Dept. of CS&SE, Dept. of Mathematics, Andhra University

Visakhapatnam, India
* Dept. of CS&SE, Andhra University

Visakhapatnam, India

Abstract— Information ambiguity and uncertainty are the
major issues in real real-world scenario and for resolving these
issues fuzzy data management has been incorporated in
different database management systems in different ways.
Even though there is much literature on XML-to-relational
storage, few of these have given satisfactory solutions to the
given problem of storing fuzzy XML data in RDBMs. In this
paper, we attempt to present yet another technique for storing
and querying fuzzy XML data in relational databases. The
content XML document is retrieved using XPath. It views the
XML document as a tree and uses one table that stores both
the information contained in the nodes as well as the structure
of the tree. We convert the XML tree representation into a
table form using LOAD XML statement. We use SQL for
query purposes. Also we can use crisp as well as fuzzy data for
input in queries. We can also validate the XML input data
using some unique key. It is a pre-defined key given at
beginning of XML code. Further, we also propose a generic
technique to convert path expression queries into SQL for
processing XML queries.

Keywords— XPath, RDBMs, XML, SQL.

I. INTRODUCTION

XML [1] serves dual functionalities as markup language
and data format. It separates presentation and data thus
offering independency and flexibility for content
association. Due to this nature of flexibility, data
interchanged between two very different systems can use
XML as the data format. XML tree-like structure is
intuitive, human readable, and easy to understand. With the
help of XML schema or DTD, the type and attributes of
each tag usable for certain XML document can be well
defined [2]. A database is any organized collection of
information. There are many traditional database
management systems that can represent crisp data using
well-understood structures. However, real-world
information containing subjective opinions and judgments
may contain complex and imprecise data along with crisp
data. The representation of such uncertain and complex data,
in a database is still a very much research issue. As
applications manipulate an increasing volume of XML data,
there is a growing need for reliable systems to store and
provide efficient access to these data [3]. The use of
relational database systems for this purpose has attracted
considerable interest. Storing and querying XML data in
relational database systems is promising because efficient
access methods for relational data have been developed for
over thirty years and query planning and optimization in the

relational algebra is well-understood [4]. Another important
issue is the sharing of information between databases.
Because different databases store data in different, and
sometimes incompatible, formats, which makes exchanging
of information a challenge. In many businesses, data from a
large number of heterogeneous databases need to be
integrated in connection with data warehousing, or system
integration. Many organizations and enterprises establish
distributed working environments, where different users
need to exchange information based on a common model.
Extensible Mark-up Language (XML) is a proposed
solution as a data representation and exchange format
through the Internet and different database models have to
meet this challenge. The Lore system is one example of a
database model which is implemented in XML. Unlike
HTML, XML allows the separation of content and
presentation, that is, XML documents simply define the
data representation and do not deal with the presentation.
XML can also be used to represent complex and imprecise
data formats in addition to crisp data formats. Not only can
XML process complex and hierarchical information, it can
also be used for commercial transactions. Therefore XML
documents can be used to transfer data between the various
Internet applications and different database models.
In order to make use of advantages of XML, information in
XML documents must be made available quickly, reliably
and in large amounts when necessary, for transactions. As
is true for management of other forms of data, management
of persistent XML data requires capabilities for data
independence, integration, access rights, versions, views,
integrity, redundancy, consistency, and recovery standards.
Functionality, consistency, restart capability, data security,
and recovery tools of a database management system can be
utilized by the XML data [26].
Some of the techniques for XML-to-relational storage
where internal data are deterministic are sound. However,
they lack the strength to cope with complex XML-to-
relational storage when the internal data contain imprecise
and uncertain information. Currently, many practical
applications, e.g., information extraction, natural language
processing, data mining, generate imprecise and uncertain
data. Moreover, in many of these applications, information
is represented in a semi-structured manner J. Liu et al.
(XML) [5]. The study of combining XML and
imprecision/uncertainty has become an emerging topic for
various applications on the Web, and there have been some
achievements in this area, including several proposed
combination frameworks [6, 7, 8–10, 11, 12, 13, 15]. Some

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5233

representations of probabilistic data in XML were proposed
in previous research papers, such as Abiteboul et al. [6, 7],
Nierrmanand Jagadish [13], and Hung et al. [10]. In [14],
Hollander and Keulen presented an approach for adapting
existing mapping techniques to map unordered probabilistic
XML data to probabilistic relational data. Gaurav and
Alhajj [8] incorporated fuzzy data in XML documents
extending the XML Schema associated to these documents.
They defined a mechanism to represent fuzzy data along
with deterministic data in XML format by introducing some
new constructors. In [15], Turowskia and Weng introduced
a formal syntax for important fuzzy data types used to store
fuzzy information. They also illustrated how fuzzy
information, whose description is based on the DTDs
(Document Type Definition), could be exchanged between
application systems by means of XML.
Surprisingly, although relational databases have the
advantage of accessing and processing deterministic and
uncertain data, and fuzzy values [16, 17] have been
employed to model and handle imprecise information in
relational databases. Although Zadeh introduced the theory
of fuzzy sets [18], the study of storing and querying fuzzy
XML data in relational databases has only recently started
and still merits further attention. Current efforts on fuzzy
XML [8, 15] are mainly made on the problems of
representing and incorporating fuzzy information in an
XML format. Due to the lack of effective strategies for
supporting fuzzy XML to-relational storage, the powerful
and reliable data management services provided by RDBMs
are not fully exploited for fuzzy XML data processing. We
therefore need the means to manage fuzzy XML
information gathered by a database management system
during its entire life, and in particular evaluate queries over
such data.
To filling the gap in the research of the fuzzy XML-to-
relational storage, it appears Ma and Yan [19] firstly
investigated schema mapping from a fuzzy XML model to
fuzzy relational databases. Their solution is to decompose
fuzzy XML instances into a set of tables based on an XML
schema definition (e.g., Document Type Definition, DTD
for short). This approach depends on the existence of a
schema describing the XML data, which is only suitable for
unordered XML data with a well-defined structure in static
scenarios (the schemas are not changed). However, it is
problematic when no XML schemas are available or XML
schemas are dynamic (the schemas that vary over time). On
the other hand, it ignores the ordered nature (document
order) of XML data, where document order is an inherent
property of XML instances and should be preserved when
storing fuzzy XML data in relational databases. Moreover,
this approach ignores the mapping of fuzzy XML queries,
which is considered to be the foundation of implementing
fuzzy XML data management in relational databases. The
uncertainty of XML data found today as well as the
flexibility of representation offered by XML raises
challenging issues for storing fuzzy XML data in traditional
relational systems. Moreover, the study of the mapping of
fuzzy XML queries, especially path expression queries, into
their SQL counterparts, is still a blank field. In order to
solve the storing and query mapping problems above, in

this paper, we study a methodology of storing and querying
fuzzy XML data in relational databases. In particular, we
present a novel approach to shared fuzzy XML data into
relational data. The unique feature of proposed approach is
that no schema information is required for our data storage.
On this basis, we present a generic approach to translate
path expression queries into SQL for processing XML
queries.

II. RELATED WORK

Goran Panic et.al [20] suggested a process simplifying
syntax and execution for fuzzy logic in XML. An
application that enabled the use of fuzzy logic with XML
data is given. In fact, users were provided a probability to
explain the self-willed membership functions, and their
calculation has got in real time with the application of the
MATLAB software. The suggested usage solution was a
backbone for a fore development of fuzzy XML application.
Their future work, explaining and executing the fuzzy
XQuery interpreter that permitted the application of
priorities planned. Also, the concentrated of future work
was on enhancing the executed functionalities and the
syntax, further enhancement of the performance and finally,
the XML structure.
E.J. Thomson Fredrick and Dr. G. Radhamani [21]
proposed a basic XML Schema explanation for presenting
fuzzy knowledge in XML documents. They have suggested
a fuzzy constraint-based structure to accredit the XML
document contrary the XML schema. They presented a
Trapezoidal and Triangular fuzzy membership functions for
executing Fuzzy Constraints. They have explained the
mechanism to show fuzzy data along with crisp data in
XML Schema. Their technique was able to support
uncertainty in schema comparing by exploiting fuzzy
constraints. In given paper, they have emphasized only on
Domain Integrity constraints using Fuzzy Logic. Because
that was an essential control for XML based usage for
executing data consistency. They have to do afore
research on Entity Integrity Constraints and Referential
Integrity Constraints for Native XML Databases. In
future, they suggested to do further research on explain
Fuzzy Triggers on the basis of XML Schema with Fuzzy
Constraints.
Z.M. Ma and Li Yan [22] described a wide exploitation of
the Web has outcome in the utility of much amounts of
electronic data. Knowledge representation and commutation
over the Web become essential, and XML has been the de
facto standard. In the other hand, given paper made a new
set of data management essential involving XML, such as
the essence to store and query XML files. Secondly, fuzzy
sets and potentially distributions have been considerably
applied to deal with knowledge imprecision and incertitude
in real-world usages, and fuzzy database modelling was
catching propagate notice for intelligent data processing. In
order to manage fuzzy data in XML, given paper
investigated the fuzzy XML data modelling. Based on
potential distribution theory, they first recognized multiple
granularity of data fuzziness in UML and XML. The fuzzy
UML data model and fuzzy XML data model that
considered all types of fuzziness created. Further, they

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5234

executed the formal exchange from the fuzzy UML model
to the fuzzy XML model, and the formal mapping from the
fuzzy XML model to the fuzzy relational databases. It
should be noted that the fuzzy extension of XML in given
paper only emphasized on XML DTD due to it has
traditionally been the most common technique for depicting
the framework of XML instance files.
Li Yan [23] described a paper in which they emphasized on
fuzzy data with fuzzy data kinds in the fuzzy databases and
fuzzy XML. They spotted various fuzzy data types,
containing fuzzy basic data types, fuzzy set data types and
fuzzy explained data types. For the aim of showing and
processing fuzzy data, they defined the declarations of the
fuzzy data kinds in the fuzzy OODB model and fuzzy XML
Schema, respectively. In future work, they suggested
prototypes of fuzzy OODB system and fuzzy XML
database system, and then accomplished the evaluation
experiment of fuzzy data type.
Alnaar Jiwani et.al [24] XML schemas have substituted
DTDs as the new way for putting constraints on XML files.
They have explained a fuzzy XML schema to show an
execution of a fuzzy relational database that permitted for
resemble relations and fuzzy sets. They have also given a
flat translation algorithm to convert from the fuzzy database
execution to a fuzzy XML file that conforms to the given
fuzzy XML schema. The given algorithm has been
implemented within VIREX and an explaining example has
been showed into the paper to explain the power of VIREX
in translating fuzzy relational data into fuzzy XML.
Currently, they were focusing and working on the given
extensions to the suggested technique. The fuzzy database
model and the fuzzy XML schema have to be extended to
unify other sorts of fuzziness such as fuzzy rules, fuzzy
integrity constraints and non -atomic data values. The flat
converting methods used to translate from the fuzzy
relational database to an XML file ensuring to the given
XML schema has to be optimized. Whether nested
translation approaches used to a fuzzy relational database
was also be focused. For given aspect, they focused to gain
from and expand the already functional executed of VIREX
for building nested XML without fuzziness. As they have
successfully created flat fuzzy XML, they expected the
process of building nested fuzzy XML to be an easy
extension of the current nested implementation of VIREX.

III. PROBLEM DEFINITION

Information imprecision and uncertainty exist in many real-
world applications and for this reason fuzzy data
management has been extensively investigated in various
database management systems. Currently, introducing
native support for XML data in relational database
management systems (RDBMs) has attracted considerable
interest with a view to leveraging the powerful and reliable
data management services provided by RDBMs. Although
there is a rich literature on XML-to-relational storage, none
of the existing solutions satisfactorily addresses the
problem of storing fuzzy XML data in RDBMs. In this
paper, we study the methodology of storing and querying
fuzzy XML data in relational databases [25].The use of
relational database management systems (RDBMSs) to

store and query XML data has attracted considerable
interest with a view to leveraging their powerful and
reliable data management services. Due to the mismatch
between the relational and XML data models, it is
necessary to first shred and loads the XML data into
relational tables, and then translates XML queries over the
original data into equivalent SQL queries over the mapped
tables. Although there is a rich literature on XML-relational
storage, none of the existing solutions addresses all the
storage problems in a single framework. Works on mapping
strategies often have little or no details about query
translation, and proposals for query translation often target
a specific mapping strategy. XML-storage solutions
provided by RDBMS also have limitations. Notably, they
are tied to a specific backend and use proprietary mapping
languages, which not only may require a steep learning
curve, but often are unable to express certain desirable
mappings [3].

IV. PROPOSED METHODOLOGY

In this paper, we are presenting a fuzzy based xml data
management system. The given system handles both crisp
as well as fuzzy data. Information is unclear sometime. We
are presenting a system for storing and querying fuzzy
XML data in relational databases. The architecture of the
given system is given below:

Fig. 1 Architecture of the fuzzy xml database system

A. XML Query Language

The XML is an Extensible Mark up Language (XML)
has a well-established data format and an increasing amount
of information which available in XML form. The XML
path language XPath is query language for choosing the
nodes from an XML document. XPath is defined by the
World Wide Web Consortium (W3C). The XPath language
is based on a tree representation of the XML document, and
gives the ability to navigate around the tree, selecting nodes
by a kind of criteria. XPath is using as a declarative
notation and permit the extraction of information through
path expressions. The core part of XPath is the path
expression, which mostly seem in XML queries. Each
expression is shaped of a finite series of steps. A step is
shaped of the main elements: an axis specifiers, that
suggests the navigation direction within the XML tree
representation, a node test, that specifies a node name or,
more generally, an expression, which permits the
identification of one or more particular nodes or paths in the
specified direction, and a predicate, that is an expression of
any complexity, which must be satisfied before the
preceding node will be matched by an X Path expression.
Simplified grammars for XPath are given below:

XML
data(crisp
and fuzzy)

Tabular
representation
of XML data

RDBMS/
Fuzzy Query

Result

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5235

�

�

�

�

�
In particular, an XPath query is an expression of the form of

 which consists of a location

path , and an optional output function O.

Each location step is of the form / :: []where is

an axis, is a node test that specifies the name of elements

 can match, and is an optional predicate that is

specified syntactically using square brackets.

Thus in this step we are converting our xml file into tree
representation. Now we generate all the table information
for creating table. XPath query extracted the node
information and then we have to traverse in such a way so
that we can collect all the information for converting given
information into table form. The traversing will start from
root node called list node and propagate through child node.
We are performing traversing from left to right in top to
bottom fashion. After traversing all the nodes we will have
the group of information which will be helpful for creating
table. It will analyse the number of columns, number of
rows and content of table. Here we are giving a graphical
representation in which all nodes showed the tree
representation by which we have extract the information for
creation the table. In the given diagram we have taken an
example of city. Here we are using crisp as well as fuzzy
data. The diagram of above concept is shown below:

Fig. 2 Tree Representation of Xml Document

In fig. 1, we are showing the tree representation of xml file.
This can be achieved by XPath query. This tree
representation is converted into table using Load XML
statement. Here we are giving the syntax.

LOAD XML [LESS_PRIORITY | CONCURRENT] [LOCAL]
INFILE ‘file_name’
[REPLACE | IGNORE]
INTO TABLE [db_name.] tbl_name

[CHARACTER SET charset_name]
[ROWS IDENTIFIED BY ‘<tagname> ‘]
[IGNORE number {LINES | ROWS}]
[(column_or_user_var,...)]
[SET col_name = expr,....]
�
The LOAD XML statement reads data from an XML file
into a table. The file_name must be given as a literal string.
The tagname in the optional ROWS IDENTIFIED BY
clause must also be given as a literal string, and must be
surrounded by angle brackets (< and >).
Now we insert the XML data into table using structure
query language.

B. Structured Query Language

A relational database management system, which is a
database management system, is based on the relational
model. In the relational model of a database, all data shown
in terms of tuples, grouped into relations. Mostly,
implementations of the relational model using the
structured query language (SQL).

The SQL language divided into many language elements
that are
1. CLAUSES, which are constituent components of
statements and queries.
2. EXPRESSIONS, which can produce either scalar values
or tables consisting of columns and rows of data.
3. PREDICATES, which define conditions that can be
measured to SQL three-valued logic (true, false and null) or
Boolean truth values, which are used to limit the effects of
statements and queries or to convert the program flow.
4. QUERIES, which retrieve the data based on specific
criteria. This is the most important element of SQL.
5. STATEMENT, which may have a persistent effect on
schemas and data, or which can control the transactions,
program flow, etc.

The most commonly operation SQL has the query, which is
worked with the declarative SELECT statement. SELECT
can get data from one or more tables or an expression.
SELECT is the most complex statements contain in SQL,
with few optional keywords and clauses that contains are:
1. The FROM clause which indicates the table from which
data is to be retrieved.
2. The WHERE clause includes a similitude predicate,
which banned the rows returned by the query.
3. The GROUP BY clause is used to project rows having
common values into a smaller set of rows.
4. The ORDER BY clause recognizes which columns used
to sort the all resulting data, and in which direction they
sorted in the order to (ascending or descending).

C. Fuzzy XML Data Model

XML data are well structured, and XML may naturally
show imprecise and uncertain information. In this case of
XML, when some elements (attributes) are uncertain, we
can allies’ elements (attributes) with membership degrees to
show them and their possibilities. Likely, when values of
elements (attributes) are uncertain, that time we can use

List

City1 City2 City3

Temp Name Temp Name Temp Name

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5236

possibility distributions to express them and their
possibilities. Theoretical foundation of the suitability of
using the above representations to define fuzzy data and
their possibilities is that XML has flexible format and the
character of self-definition. Let us interpret what a
membership degree helped with an element means,
provided that the element can nest contain under other
elements, and more than one of these elements may have an
associated membership degree. The existential membership
degree associated with an element should be the possibility
that the state of the world includes this element and the sub-
tree rooted at it. For an element with the sub-tree rooted at
it, each node in the sub-tree is not treated as independent
but dependent upon its root-to-node chain. Each possibility
in the source XML document is assigned based on the fact
that the parent element is known to exist. This possibility is
relative one basis upon the assumption that the possibility
the parent element exists is exactly 1.0. In order to
numerate the absolute possibility, we can consider the
relative possibility in the parent element. In generally, the
absolute possibility of an element e can be contained by
multiplying the relative possibilities found in the source
XML along the path from to its root. Fuzzy XML document
can naturally modeled as an ordered node tree. In general,
we have six kinds of nodes in a fuzzy tree that are root,
elements, attributes, text, fuzzy construct, and possibility
attribute, where the root, elements, attributes, and text
nodes are deterministic nodes, and fuzzy construct and
possibility attribute nodes are fuzzy nodes. A simple
example illustrates the six node types. The root node is a
virtual node pointing to the root element of an XML
document. Elements in an XML document are showing as
an element node with an expanded-name. Element nodes
have m (m≥0) other elements, attributes or text as its
children. Text nodes are string-valued nodes, and they
haven’t any child nodes. An attribute node has an attribute
name and an attribute-value. The fuzzy nodes Dist and Val,
constructs, and possibility attribute nodes are used for
specifying the possibility (possibility distribution) of a
given element existing in the XML document.

D. Fuzzy XML to Relational Storage

In the hierarchical, ordered XML and the flat, unordered
relational data models, are not fully accusation, so fuzzy
XML to-relational storage is not a straightforward work. In
this chapter, we are presenting an XPath mapping technique
to store fuzzy XML data in relational databases. In an XML
deterministic scenario, we have three main kinds of nodes
in an XML data tree, which are element, attribute and text
nodes. The element nodes further classified into two kinds
they are leaf element and non-leaf element nodes. Note that
the root node special non-leaf element node. However, in a
fuzzy XML scenario, in addition to element, attribute and
text nodes, there are three special nodes, which are
possibility attribute, Val construct and Dist construct nodes.
As a result, the relational schema constructed from fuzzy
XML data trees is clearly different from the schema
constructed from deterministic data trees. Fuzzy output will
show like this in table form as given below:

TABLE I
Fuzzy Output Shown for Given ID

Property Name Crisp ID
Very cold City 1

Cold City 2
Warm City 3
Hot City 4

E. XML Input Data Validation

In this section we present XML input data validation
through unique key. We assign a unique key to each child
node for identifying uniqueness in group. Here we are
taking an example of city. We have a group of city as a
child node which will be child node of list node. There is
more than one city in XML document. We have to
distinguish these columns, for this we assign a unique key
to each sub tag of list. It will ensure the validation of
uniqueness. In the case we will not provide unique key to
each child of list node, it will give error at the time of
compilation. It will also help when we query for fuzzy
output. Uniqueness will be predefined, when we will right
the xml file at that time only we will give unique in the tag
field when it is defined. Here we are given the xml code,
which demonstrate the given concept.
< ? Xml version = 1.0? >
< List >
< City city_id = "1" >
< City name > Pune < /City name >
< City state > Maharashtra < /City state >
< Temp temp_id = "1" >
< Linguistic label = “cold” >
< Min > 4 < /Min >
< Max > 10 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 12 < /Min >
< Max > 30 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 32 < /Min >
< Max > 40 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "2" >
< City name > Trivandrum < /City name >
< City state > Kerala < /City state >
< Temp temp_id = "2" >"
< Linguistic label = “cold” >
< Min > 1 < /Min >
< Max > 5 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 8 < /Min >
< Max > 15 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 18 < /Min >
< Max > 25 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "3" >
< City name > Shillong </ City name >

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5237

< City state > Meghalaya < /City state >
< Temp temp_id = "3" >
< Linguistic label = “cold” >
< Min > 1 < /Min >
< Max > 6 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 7 < /Min >
< Max > 15 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 16 < /Min >
< Max > 22 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "4" >
< City name > Shimla < /City name >
< City state > Himachal Pradesh < /City state >
< Temp temp_id = "4" >
< Linguistic label = “cold” >
< Min > -5 < /Min >
< Max > 1 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 5 < /Min >
< Max > 10 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 11 < /Min >
< Max > 15 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "5" >
< City name > Hyderabad < /City name >
< City state > Andhra Pradesh < /City state >
< Temp temp_id = "5" >
< Linguistic label = “cold” >
< Min > 10 < /Min >
< Max > 20 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 22 < /Min >
< Max > 30 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 32 < /Min >
< Max > 40 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "6" >
< City name > Nagpur < /City name >
< City state > Maharashtra < /City state >
< Temp temp_id = "6" >
< Linguistic label = “cold” >
< Min > 10 < /Min >
< Max > 20 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 22 < /Min >
< Max > 30 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 32 < /Min >
< Max > 40 < /Max >

< /Linguistic label >
< /Temp >
< /City >
< City city_id = "7" >
< City name > Mysore < /City name >
< City state > Karnataka < /City state >
< Temp temp_id = "7" >
< Linguistic label = “cold” >
< Min > 4 < /Min >
< Max > 10 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 12 < /Min >
< Max > 25 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 26< /Min >
< Max > 35 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "8" >
< City name > Badrinath < /City name >
< City state > Uttarakhand < /City state >
< Temp temp_id = "8" >
< Linguistic label = “cold” >
< Min > -5 < /Min >
< Max > 0 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 1 < /Min >
< Max > 5 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 6 < /Min >
< Max > 10 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "9" >
< City name > Bhopal < /City name >
< City state > Madhya Pradesh < /City state >
< Temp temp_id = "9" >
< Linguistic label = “cold” >
< Min > 10 < /Min >
< Max > 20 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 22 < /Min >
< Max > 30 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 32 < /Min >
< Max > 40 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< City city_id = "10" >
< City name > Goa < /City name >
< City state > Goa < /City state >
< Temp temp_id = "10" >
< Linguistic label = “cold” >
< Min > 4 < /Min >
< Max > 10 < /Max >
< /Linguistic label >
< Linguistic label = “warm” >
< Min > 12 < /Min >

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5238

< Max > 20 < /Max >
< /Linguistic label >
< Linguistic label = “hot” >
< Min > 22 < /Min >
< Max > 30 < /Max >
< /Linguistic label >
< /Temp >
< /City >
< /List >
< /Xml >

The overall algorithm can be described below:
Step 1: create an xml file which consists of crisp and fuzzy
data.
Step 2: cluster the xml data using fuzzy for creating table.
Step 3: convert xml file into table form using LOAD XML.
Step 4: query from obtain table to get desired result.

V. RESULTS AND DISCUSSION

In this paper we have extracted the XML information using
XPath query language that has been implemented in the
working platform of JAVA (NetBean 6.8) and MySQL.
We insert the extracted information into table using SQL.
We converted the XML file into table form using LOAD
XML statement. Here we are showing the fuzzy output in
the form of table. Fuzzy XML data are stored in relational
database. By converting XML file into table we can easily
query and retrieved the data from relational database. Here
we are showing the different screenshot for the entire work.

Fig. 3 Table Representation of XML File

In the above fig. 3, we extracted the XML information
using XPath algorithm to create table. In this section we
identified the attribute of table which will be inserted in
table using LOAD XML statement.

Fig. 4 XML Data in the Form of Table

In the above fig. 4, we created a table using SQL and insert
the extracted information using LOAD XML statement.

Fig. 5 Fuzzy Input Output Table

In the above fig. 5, we showed the fuzzy input output table.
The fuzzy set table contained the fuzzy input for
temperature, which is varying between minimum to
maximum. The fuzzy output table is created on the basis of
table generated from XML file.

VI. CONCLUSION

The uncertainty of XML data is the major issue in current
time for storing fuzzy XML data in traditional relational
systems. In this paper we present a new technique by which
we retrieved fuzzy XML data using XPath algorithm.
XPath algorithm extract the information stored in XML
document. We convert the given extracted information into

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5239

table form using LOAD XML statement. LOAD XML
statement has its own syntax which is used for converting
xml file to table form. We insert the xml information into
table using SQL. The unique feature of our technique is that
no schema information is needed for the data storage. On
this basis, we have given a new approach to convert path
expressions to SQL queries for processing XML queries.
We can query from table using simple SQL query. Here we
have presented the input data validation in XML. This can
be achieved using unique key. We can easily distinguish the
child node of XML document.

There are a number of ways for future research. We are
presently working on a prototype giving the feasibility of
the technique for large practical applications. As future
work, we plan to enhance our mapping approach by taking
constraints during the data mapping, developing query
translation techniques to translate complex XML queries
such as XQuery queries into corresponding SQL statements,
and improving our technique by providing query
optimization techniques.

REFERENCES
[1] W3C XML Path Language Specification, Latest.

http://www.w3.org/TR/xpath.
[2] Mikael Fernandus Simalango, “XML Query Processing and Query

Languages”: A Survey, 2007.
[3] Amer-Yahia. S, Du. F and Freire. J, “A comprehensive solution to

the XML-to-relational mapping problem,” In: Proceedings of
WIDM, pp 31–38, 2004.

[4] Weigel. F, Schulz. KU and Meuss. H, “Exploiting native XML
indexing techniques for XML retrieval in relational database
systems”, In: Proceedings of WIDM, pp 23–30, 2005.

[5] Senellart. P and Abiteboul. S, “On the complexity of managing
probabilistic XML data,” In: Proceedings of PODS, pp 283–292,
2007.

[6] Abiteboul. S and Senellart. P, “Querying and updating probabilistic
information in XML,” In: Proceedings of EDBT, pp 1059–1068,
2006.

[7] Abiteboul. S, Kimelfeld. B, Sagiv. B and Senellart Y, “On the
expressiveness of probabilistic XML models”, VLDB J 18(5):1041–
1064, 2009.

[8] Gaurav. A and Alhajj. R, “Incorporating fuzziness in XML and
mapping fuzzy relational data into fuzzy XML”, In: Proceedings of

the 2006 ACM symposium on applied computing, pp 456–460,
2006.

[9] Hollander. ES, and van Keulen. M (2010) “Storing and querying
probabilistic XML using a probabilistic relational DBMS”, In:
Proceedings of the 4th international workshop on management of
uncertain data (MUD 2010), pp 35–49.

[10] Hung. E, Getoor. L and Subrahmanian. V.S (2003) “PXML: a
probabilistic semi-structured data model and algebra”, in:
Proceedings of ICDE, pp 467–478.

[11] Liu. J, Ma. ZM and Yan. L (2009) “Efficient processing of twig
pattern matching in fuzzy XML”. In: Proceedings of CIKM, pp 193–
204.

[12] Ma. ZM, Liu. J and Yan. L (2010) Fuzzy data modeling and
algebraic operations in XML. Int J IntellSyst 25(9):925–94

[13] Nierrman. A, and Jagadish. HV (2002) ProTDB: probabilistic data
in XML. In: Proceedings of VLDB, pp 646–657.

[14] Hollander. ES and van Keulen. M (2010) Storing and querying
probabilistic XML using a probabilistic relational DBMS. In:
Proceedings of the 4th international workshop on management of
uncertain data (MUD 2010), pp 35–49.

[15] Turowski. K and Weng. U (2002) Representing and processing
fuzzy information an XML-based approach. J Knowl-Based Syst
15:67–75.

[16] Valova. I, Milano. G, Bowen. K and Gueorguieva. N (2011)
Bridging the fuzzy, neural and evolutionary paradigms for
automatic target recognition. ApplIntell 35(2):211–225.

[17] Zajaczkowski. J and Verma. B (2012) Selection and impact of
different topologies in multi-layered hierarchical fuzzy systems.
ApplIntell36(3):564–584.

[18] Zadeh. LA (1965) Fuzzy sets. Inf Control 8(3):338–353.
[19] Ma. Z.M and Yan. L (2007) Fuzzy XML data modeling with the

UML and relational data models. Data KnowlEng 63:972–996.
[20] Panic. G, Rackovi. M and Škrbic. S, “Fuzzy XML with

Implementation”, Novi Sad, Serbia, 2012.
[21] Thomson Fredrick E.J. and Radhamani. G, “Fuzzy Integrity

Constraints for Native XML Database”, International Journal of
Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012.

[22] Ma. Z.M, and Yan. L, “Fuzzy XML data modeling with the UML
and relational data models”, Elsevier B.V., 2007.

[23] Yan. L, “Modeling Fuzzy Data with Fuzzy Data Types in Fuzzy
Database and XML Models”, IAJIT, 2007.

[24] Jiwani. A, Ali Mohamed. Y, Spence. K, Lo. A, Özyer. T and Alhajj.
R, “Fuzzy XML Model for Representing Fuzzy Relational databases
in Fuzzy XML Format”, 2007.

[25] Liu. J, Ma. Z.M, Feng. X, “Storing and querying fuzzy XML data in
relational databases”, Journal Applied Intelligence archive Volume
39 Issue 2, September 2013.

[26] Üstünkaya. E, “Fuzzy Querying In Xml Databases”, Approval Of
The Graduate School Of Natural And Applied Sciences, 2004.

Naresh Kumar. K et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5233-5240

www.ijcsit.com 5240

